Modeling the Rupture Process of the Tokachi-Oki Earthquake using 1-Hz GPS

Kristine M. Larson

Department of Aerospace Engineering Sciences

University of Colorado

Kristine.Larson@colorado.edu

http://spot.colorado.edu/~kristine

Colleagues

Earthquake Research Institute: Shin'ichi Miyazaki, Kazuki Koketsu, Kazuhito Hikima

Geographical Survey Institute: Atsushi Yamagiwa

Memphis: Paul Bodin

CU: Kyuhong Choi

Purdue: Jennifer Haase and Gordon Emore

Paper is in press at Geophysical Research Letters

Outline

- > High-Rate GPS
- > 1-Hz Observations from Tokachi-Oki
- > Model Results
- Implications for Earthscope (PBO) & real-time systems

Traditional GPS

- > Sample at 30 sec.
- > Edit data.
- > Decimate to 5 min.
- > Orbits are held fixed.
- Estimate one position per day.

1-Hz GPS

- Sample at 1 Hz
- > Edit data.
- > No decimation.
- > Orbits are held fixed.
- Estimate one position per second.

We use the same software (JPL-GIPSY) to analyze the data.

Traditional GPS

- > 24-28 satellites are viewed for 24 hours
- Geometry of the satellites affects position minimally.

1-Hz GPS

- > 6-8 satellites will be viewed within 1 hour.
- Geometry of the satellites in the sky determines the precision.

1-Hz GPS

- Relative ground motions [i.e. to a site held fixed]
- Displacement <u>estimated</u>
- Insensitive to small ground motions, but no upper limit...

Seismology

- Inertial local reference frame ground motions
- > Acceleration measured

Sensitive to small ground velocities or large accelerations

San Simeon Earthquake

Parkfield Earthquake Chen Ji's Preliminary Slip Model

Strong Motion Network

Harvard Mw 8.3

GEONET

Tokachi-Oki 1-Hz GPS Results

- > Irwan et al. [2004]
- Koyama et al. [2004]
- > Yamagiwa, this meeting

1-Hz GPS Sites Used

Methodology

- Multiple time window inversion
- > Fault plane 10 x 10 km segments
- Frequency-Wavenumber (FK) of Zhu & Rivera [2003].
- > Smoothness & positivity constraints.
- > Velocity structure after Yagi [2004].

Mo= 1.7×10^{21} Nm (Mw8.1) Peak Slip ~ 9.0 m

Aftershocks

Ito et al. [2004]

Model Results from Seismic Data

- Yamanaka & Kikuchi [2003]
- ➤ Honda et al. [2004]
- Yagi [2004]
- Koketsu et al. [2004]
- > This presentation

What Next?

Implications for Earthscope

- High-frequency GPS provides a useful measurement of large ground displacements during earthquakes.
- Existing GPS and seismic networks in Japan provide invaluable information for developing PBO.
- Results from Tokachi-Oki influenced UNAVCO's choice of 5 Hz as a sampling interval for PBO.

Implications for Real-Time

- Real-time GPS will "never" be better than postanalysis.
- Nevertheless, we know how to build a real-time GPS positioning system. In practice, it will take time and effort to build an high-precision GPS real-time system with error checking.
- Much of the GPS hardware is already installed. Software and communications are needed.

Acknowledgements

- > GSI
- > NIED
- > NSF EAR
- > UNAVCO
- > Orbits: IGS
- > GIPSY: JPL
- > Archives: CDDIS, SOPAC
- Comments: J. Savage, L. Zhu, R. Graves, R. Burgmann, A. Venkataraman, K. Hirahara, D. Wald